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Abstract

In this paper, we address unsupervised pose-guided per-

son image generation, which is known challenging due to

non-rigid deformation. Unlike previous methods learning a

rock-hard direct mapping between human bodies, we pro-

pose a new pathway to decompose the hard mapping in-

to two more accessible subtasks, namely, semantic pars-

ing transformation and appearance generation. Firstly, a

semantic generative network is proposed to transform be-

tween semantic parsing maps, in order to simplify the non-

rigid deformation learning. Secondly, an appearance gen-

erative network learns to synthesize semantic-aware tex-

tures. Thirdly, we demonstrate that training our frame-

work in an end-to-end manner further refines the semantic

maps and final results accordingly. Our method is gener-

alizable to other semantic-aware person image generation

tasks, e.g., clothing texture transfer and controlled image

manipulation. Experimental results demonstrate the supe-

riority of our method on DeepFashion and Market-1501

datasets, especially in keeping the clothing attributes and

better body shapes.

1. Introduction

Pose-guided image generation has attracted great atten-

tions recently, which is to change the pose of the person im-

age to a target pose, while keeping the appearance details.

This topic is of great importance in fashion and art domains

for a wide range of applications from image / video editing,

person re-identification to movie production.

With the development of deep learning and generative

model [8], many researches have been devoted to pose-

guided image generation [19, 21, 5, 27, 26, 1, 20]. Initial-

ly, this problem is explored under the fully supervised set-

ting [19, 27, 26, 1]. Though promising results have been p-

resented, their training data has to be composed with paired

images (i.e., same person in the same clothing but in differ-

ent poses). To tackle this data limitation and enable more
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Figure 1: Visual results of different methods on DeepFash-

ion [18]. Compared with PG2 [19], Def-GAN [27], and

UPIS [21], our method successfully keeps the clothing at-

tributes (e.g., textures) and generates better body shapes

(e.g., arms).

flexible generation, more recent efforts have been devot-

ed to learning the mapping with unpaired data [21, 5, 20].

However without “paired” supervision, results in [21] are

far from satisfactory due to the lack of supervision. Dis-

entangling image into multiple factors (e.g., background /

foreground, shape / appearance) is explored in [20, 5]. But

ignoring the non-rigid human-body deformation and cloth-

ing shapes leads to compromised generation quality.

Formally, the key challenges of this unsupervised task

are in three folds. First, due to the non-rigid nature of hu-

man body, transforming the spatially misaligned body-parts

is difficult for current convolution-based networks. Sec-

ond, clothing attributes, e.g., sleeve lengths and textures,

are generally difficult to preserve during generation. How-

ever, these clothing attributes are crucial for human visual

perception. Third, the lack of paired training data gives little

clue in establishing effective training objectives.

To address these aforementioned challenges, we propose

to seek a new pathway for unsupervised person image gen-

eration. Specifically, instead of directly transforming the

person image, we propose to transform the semantic parsing

between poses. On one hand, translating between person
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image and semantic parsing (in both directions) has been

extensively studied, where sophisticated models are avail-

able. On the other hand, semantic parsing transformation

is a much easier problem to handle spatial deformation, s-

ince the network does not care about the appearance and

textures.

As illustrated in Fig. 2, our model for unsupervised per-

son image generation consists of two modules: semantic

parsing transformation and appearance generation. In se-

mantic parsing transformation, a semantic generative net-

work is employed to transform the input semantic parsing

to the target parsing, according to the target pose. Then

an appearance generative network is designed to synthe-

size textures on the transformed parsing. Without paired

supervision, we create pseudo labels for semantic parsing

transformation and introduce cycle consistency for training.

Besides, a semantic-aware style loss is developed to help

the appearance generative network learn the essential map-

ping between corresponding semantic areas, where clothing

attributes can be well-preserved by rich semantic parsing.

Furthermore, we demonstrate that the two modules can be

trained in an end-to-end manner for finer semantic parsing

as well as the final results.

In addition, the mapping between corresponding seman-

tic areas inspires us to apply our appearance generative net-

work on applications of semantic-guided image generation.

Conditioning on the semantic map, we are able to achieve

clothing texture transfer of two person images. In the mean-

while, we are able to control the image generation by man-

ually modifying the semantic map.

The main contributions can be summarized as follows:

• We propose to address the unsupervised person image

generation problem. Consequently, the problem is de-

composed into semantic parsing transformation (HS)

and appearance generation (HA).

• We design a delicate training schema to carefully op-

timize HS and HA in an end-to-end manner, which

generates better semantic maps and further improves

the pose-guided image generation results.

• Our model is superior in rendering better body shape

and keeping clothing attributes. Also it is generaliz-

able to other conditional image generation tasks, e.g.,

clothing texture transfer and controlled image manip-

ulation.

2. Related Work

2.1. Image Generation

With the advances of generative adversarial network-

s (GANs) [8], image generation has received a lot of at-

tentions and been applied on many areas [15, 29, 4, 31].

There are mainly two branches in this research field. One

lies in supervised methods and another lies in unsupervised

methods. Under the supervised setting, pix2pix [11] built a

conditional GAN for image to image translation, which is

essentially a domain transfer problem. Recently, more ef-

forts [15, 29] have been devoted to generating really high-

resolution photo-realistic images by progressively generat-

ing multi-scale images. For the unsupervised setting, re-

construction consistency is employed to learn cross-domain

mapping [34, 32, 16]. However, these unsupervised meth-

ods are developed and applied mostly for appearance gener-

ation of the spatially aligned tasks. With unpaired training

data, our work is more intractable to learn the mapping to

handle spatial non-rigid deformation and appearance gener-

ation simultaneously.

2.2. Pose­Guided Person Image Generation

The early attempt on pose-guided image generation was

achieved by a two-stage network PG2 [19], in which the

output under the target pose is coarsely generated in the

first stage, and then refined in the second stage. To better

model shape and appearance, Siarohin et al. [27] utilized

deformable skips to transform high-level features of each

body part. Similarly, the work in [1] employs body part

segmentation masks to guide the image generation. How-

ever, [19, 27, 1] are trained with paired data. To relieve the

limitation, Pumarola et al. [21] proposed a fully unsuper-

vised GAN, borrowing the ideas from [34, 22]. On the other

hand, the works in [5, 20] solved the unsupervised problem

by sampling from feature spaces according to the data dis-

tribution. These sample based methods are less faithful to

the appearance of reference images, since they generate re-

sults from highly compressed features. Instead, we use se-

mantic information to help preserve body shape and texture

synthesis between corresponding semantic areas.

2.3. Semantic Parsing for Image Generation

The idea of inferring scene layout (semantic map) has

been explored in [10, 14] for text-to-image translation. Both

of the works illustrate that by conditioning on estimated lay-

out, more semantically meaningful images can be generat-

ed. The scene layout is predicted from texts [10] or scene

graphs [14] with the supervision from groundtruth. In con-

trast, our model learns the prediction for semantic map in an

unsupervised manner. We also show that the semantic map

prediction can be further refined by end-to-end training.

3. The Proposed Method

Given a target pose pt and a reference image Ips
under

pose ps, our goal is to generate an output image Ĩpt
, which

follows the clothing appearance of Ips
but under the pose

pt. This generation can be formulated as: < Ips
,pt >→

Ĩpt
.
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Figure 2: Our framework for unsupervised person image generation.

During the training process, we are under an un-

supervised setting: the training set is composed with

{Ii
pi
s
,pi

s,p
i
t}

N
i=1

, where the corresponding ground-truth im-

age Iipt
is not available. For this challenging unpaired per-

son image generation problem, our key idea is to introduce

human semantic parsing to decompose it into two modules:

semantic parsing transformation and appearance genera-

tion. Our overall framework can be viewed in Fig. 2(a). Se-

mantic parsing transformation module aims to first generate

a semantic map under the target pose, which provides cru-

cial prior for the human body shape and clothing attributes.

Guided by the predicted semantic map and the reference

image, appearance generation module then synthesizes tex-

tures for the final output image.

In the following, we first introduce person representa-

tion, which is the input of our framework. We then describe

each module in details from the perspective of independent

training. Finally, we illustrate the joint learning of the two

modules in an end-to-end manner.

3.1. Person Representation

Besides the reference image Ips
∈ R

3×H×W , the source

pose ps, and the target pose pt, our model also involves a

semantic map Sps
extracted from Ips

, pose masks Mps
for

ps and Mpt
for pt. In our work, we represent poses as prob-

ability heat maps, i.e., ps,pt ∈ R
k×H×W (k = 18). The

semantic map Sps
is extracted with an off-the-shelf human

parser [7]. We represent Sps
using a pixel-level one-hot en-

coding, i.e., Sps
∈ {0, 1}L×H×W , where L indicates the to-

tal number of semantic labels. For the pose masks Mps
and

Mpt
, we adopt the same definition in [19], which provide

prior on pose joint connection in the generation process.

3.2. Semantic Parsing Transformation (HS)

In this module, we aim to predict the semantic map

S̃pt
∈ [0, 1]L×H×W under the target pose pt, accord-

ing to the reference semantic map Sps
. It is achieved by

the semantic generative network, which is based on U-

Net [23]. As shown in Fig. 2(b), our semantic genera-

tive network consists of a semantic map encoder ES , a

pose encoder EP and a semantic map generator GS . ES

takes Sps
, ps and Mps

as input to extract conditional se-

matic information, while EP takes pt and Mpt
as input

to encode the target pose. GS then predicts S̃pt
based on

the encoded features. As [35], softmax activation func-

tion is employed at the end of GS to generate the seman-

tic label for each pixel. Formally, the predicted seman-

tic map S̃pt
conditioned on Sps

and pt is formulated as

S̃pt
= GS (ES(Sps

,ps,Mps
), EP (pt,Mpt

)). The intro-

duction of Mps
and Mpt

as input is to help generate contin-

uous semantic maps, especially for bending arms.

Pseudo label generation. The semantic generative net-

work is trained to model the spatial semantic deformation

under different poses. Since semantic maps do not associate

with clothing textures, people in different clothing appear-

ance may share similar semantic maps. Thus, we can search

similar semantic map pairs in the training set to facilitate

the training process. For a given Sps
, we search a semantic

map Sp∗

t
which is under different poses but shares the same

clothing type as Sps
. Then we use p

∗

t as the target pose for

Sps
, and regard Sp∗

t
as the pseudo ground truth. We define

a simple yet effective metric for the search problem. The
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human body is decomposed into ten rigid body subparts as

in [27], which can be represented with a set of binary masks

{Bj}10j=1
(Bj ∈ R

H×W ). Sp∗

t
is searched by solving

Sp∗

t
= argmin

Sp

10
∑

j=1

||Bj
p ⊗ Sp − fj(B

j
ps

⊗ Sps
)||2

2
, (1)

where fj(·) is an affine transformation to align the two

body parts according to four corners of corresponding bina-

ry masks, ⊗ denotes the element-wise multiplication. Note

that pairs sharing very similar poses are excluded.

Cross entropy loss. The semantic generative net-

works can be trained under supervision with paired data

{Sps
,ps, Sp∗

t
,p∗

t }. We use the cross-entropy loss Lce
S to

constrain pixel-level accuracy of semantic parsing transfor-

mation, and we give the human body more weight than the

background with the pose mask Mp∗

t
as

Lce
S = −||Sp∗

t
⊗ log(S̃p∗

t
)⊗ (1 +Mp∗

t
)||1. (2)

Adversarial loss. We also employ an adversarial loss

Ladv
S with a discriminator DS to help GS generate semantic

maps of visual style similar to the realistic ones.

Ladv
S = Ladv(HS , DS , Sp∗

t
, S̃p∗

t
), (3)

where HS = GS ◦ (ES , EP ), Ladv(G,D,X, Y ) =
EX [logD(X))] + EY [log(1 − D(Y )] and Y is associated

with G.

The overall losses for our semantic generative network

are as follows,

Ltotal
S = Ladv

S + λceLce
S . (4)

3.3. Appearance Generation (HA)

In this module, we utilize the appearance generative net-

work to synthesize textures for the output image Ĩpt
∈

R
3×H×W , guided by the reference image Sps

and predict-

ed semantic map S̃pt
from semantic parsing transformation

module. The architecture of appearance generative network

consists of an appearance encoder EA to extract the appear-

ance of reference image Ips
, a semantic map encoder E′

S to

encode the predicted semantic map S̃pt
, and an appearance

generator GA. The architecture of appearance generative

network is similar to the semantic generative network, ex-

cept that we employ deformable skips in [27] to better mod-

el spatial deformations. The output image is obtained by

Ĩpt
= GA

(

EA(Ips
, Sps

,ps), E
′

S(S̃pt
,pt)

)

, as in Fig. 2(c).

Without the supervision of ground truth Ipt
, we train the

appearance generative network using the cycle consistency

as [34, 21], in which GA should be able to map back Ips

with the generated Ĩpt
and ps. We denote the mapped-back

image as Ĩps
, and the predicted segmentation map as S̃ps

in

the process of mapping back.

Adversarial loss. Discriminator DA is first introduced

to distinguish between the realistic image and generated im-

age, which leads to adversarial loss Ladv
A

Ladv
A = Ladv(HA, DA, Ips

, Ĩpt
) + Ladv(HA, DA, Ips

, Ĩps
),

(5)

where HA = GA ◦ (EA, E
′

S).
Pose loss. As in [21], we use pose loss Lpose

A with a pose

detector P to generate images faithful to the target pose

Lpose
A = ||P(Ĩpt

)− pt||
2

2
+ ||P(Ĩps

)− ps||
2

2
. (6)

Content loss. Content loss Lcont
A is also employed to

ensure the cycle consistency

Lcont
A = ||Λ(Ĩps

)− Λ(Ips
)||2

2
, (7)

where Λ(I) is the feature map of image I of conv2 1 layer

in VGG16 model [28] pretrained on ImageNet.

Style loss. It is challenging to correctly transfer the color

and textures from Ips
to Ĩpt

without any constraints, since

they are spatially misaligned. [21] tried to tackle this issue

with patch-style loss, which enforces that texture around

corresponding pose joints in Ips
and Ĩpt

are similar. We

argue that patch-style loss is not powerful enough in two-

folds: (1) textures around joints would change with differ-

ent poses, (2) textures of main body parts are ignored. An-

other alternative is to utilize body part masks. However,

they can not provide texture contour. Thanks to the guid-

ance provided by semantic maps, we are able to well re-

tain the style with a semantic-aware style loss to address

the above issues. By enforcing the style consistency among

Ips
, Ĩpt

and Ĩps
, our semantic-aware style loss is defined as

Lsty
A = Lsty(Ips

, Ĩpt
, Sps

, S̃pt
) + Lsty(Ĩpt

, Ĩps
, S̃pt

, S̃ps
),

(8)
where

Lsty(I1, I2, S1, S2)

=

L
∑

l=1

||G(Λ(I1)⊗Ψl(S1))− G(Λ(I2)⊗Ψl(S2)))||
2

2
.

And G(·) denotes the function for Gram matrix [6], Ψl(S)
denotes the downsampled binary map from S, indicating

pixels that belong to the l-th semantic label.

Face loss. Besides, we add a discriminator DF for gen-

erating more natural faces,

Lface
A = Ladv(HA, DF ,F(Ips

),F(Ĩpt
))

+ Ladv(HA, DF ,F(Ips
),F(Ĩps

)),
(9)

where F(I) represents the face extraction guided by pose

joints on faces, which is achieved by a non-parametric spa-

tial transform network [12] in our experiments.

The overall losses for our appearance generative network

are as follows,

Ltotal
A = Ladv

A + λposeLpose
A + λcontLcont

A

+ λstyLsty
A + Lface

A .
(10)
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3.4. End­to­End Training

Since the shape and contour of our final output is guided

by the semantic map, the visual results of appearance gener-

ation rely heavily on the quality of predicted semantic map

from semantic parsing transformation. However, if they are

independently trained, two reasons might lead to instability

for HS and HA.
• Searching error: the searched semantic maps are not

very accurate, as in Fig. 3(a).

• Parsing error: the semantic maps obtained from human

parser are not accurate, since we do not have labels to

finetune the human parser, as in Fig. 3(b).

Our training scheme is shown in Algorithm 1.

Algorithm 1 End-to-end training for our network.

Input: {Si
ps
,pi

s, S
i
p∗

t
, (p∗

t )
i}N

∗

i=1
, {Iips

,pi
s,p

i
t}

N
i=1

.

1: Initialize the network parameters.

//Pre-train HS

2: With {Si
ps
,pi

s, S
i
p∗

t
, (p∗

t )
i}N

∗

i=1
, train {HS , DS} to opti-

mize Ltotal
S .

//Train HA

3: With {Iips
,pi

s, S̃
i
pt
,pi

t}
N
i=1

and {HS , DS} fixed, train

{HA, DA, Dface} to optimize Ltotal
A .

//Joint optimization

4: Train {HS , DS , HA, DA, Dface} jointly with Ltotal
A ,

using {Iips
,pi

s, S̃
i
pt
,pi

t}
N
i=1

.

Output: HS , HA.

(a) Searching error (b) Parsing error

Figure 3: Errors exist in the searched semantic map pairs,

which might cause the inaccuracy of semantic parsing trans-

formation.

4. Experiments
In this section, we evaluate our proposed framework with

both qualitative and quantitative results.

4.1. Datasets and Settings

DeepFashion [18]. We experiment with the In-shop

Clothes Retrieval Benchmark of the DeepFashion dataset.

It contains a large number of clothing images with various

appearance and poses, the resolution of which is 256 × 256.

Since our method does not require paired data, we random-

ly select 37, 258 images for training and 12, 000 images for

testing.

Market-1501 [33]. This dataset contains 32,668 images

from different viewpoints. The images are in the resolution

Figure 4: Example results by different methods (PG2 [19],

Def-GAN [27] and UPIS [21]) on DeepFashion. Our model

better keeps clothing attributes (e.g., textures, clothing type-

s).

of 128 × 64. We adopt the same protocol for data split as

in [33]. And we select 12,000 pairs for testing as in [27].

Implementation details. For the person representation,

the 2D poses are extracted using OpenPose [2], and the con-

dition semantic maps are extracted with the state-of-the-art

human parser [7]. We integrate the semantic labels original-

ly defined in [7] and set L = 10 (i.e., background, face, hair,

upper clothes, pants, skirt, left/right arm, left/right leg). For

DeepFashion dataset, the joint learning to refine semantic

map prediction is performed on the resolution of 128×128.

Then we upsample the predicted semantic maps to train im-

ages in 256× 256 with progressive training strategies [15].

For Market-1501, we directly train and test on 128 × 64.

Besides, since the images in Market-1501 are in low resolu-

tion and the face regions are blurry. Lface
A is not adopted on

Market-1501 for efficiency. For the hyper-parameters, we

set λpose, λcont as 700, 0.03 for DeepFashion and 1, 0.003

for Market-1501. λsty is 1 for all experiments. We adopt

ADAM optimizer [17] to train our network with a learning

rate 0.0002 (β1 = 0.5 and β2 = 0.999). The batch sizes for

DeepFashion and Market-1501 are set to 4 and 16, respec-

tively. For more detailed network architecture and training

scheme on each dataset, please refer to our supplementary.

4.2. Comparison with State­of­the­Arts

Qualitative Comparison. In Fig. 1, Fig. 4 and Fig. 5,

we present the qualitative comparison with three state-of-

the-art methods: PG2 [19], Def-GAN [27] and UPIS [21]1.

1The results for PG2 and Def-GAN are obtained by public models re-

leased by their authors, and UPIS are based on our implementation.
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Figure 5: Example results by different methods (PG2 [19],

Def-GAN [27] and UPIS [21]) on Market-1501. Our model

generates better body shapes.

PG2 [19] and Def-GAN [27] are supervised methods that re-

quire paired training data. UPIS [21] is under the unsuper-

vised setting, which essentially employs CycleGAN [34].

Our model generates more realistic images with higher vi-

sual quality and less artifacts. As shown in Fig. 4, our

method is especially superior in keeping the clothing at-

tributes, including textures and clothing type (the last row).

Similarly in Fig. 5, our method better shapes the legs and

arms. More generated results can be found in our supple-

mentary.

Quantitative Results. In Table 1, we use the Inception

Score (IS) [24] and Structural SIMilarity (SSIM) [30] for

quantitative evaluation. For Market-1501 dataset, to allevi-

ate the influence of background, mask-IS and mask-SSIM

are also employed as in [19], which exclude the background

area when computing IS and SSIM. For a fair comparison,

we mark the training data requirements for each method.

Overall, our proposed model achieves the best IS value

on both datasets, even compared with supervised methods,

which is in agreement with more realistic details and better

body shape in our results. Our SSIM score is slightly lower

than other methods, which can be explained by the fact that

blurry images always achieve higher SSIM but being less

photo-realistic, as observed in [20, 19, 13, 25]. Limited by

space, please refer to our supplementary for user study.

4.3. Ablation Study

We design the following experiments with different con-

figurations to first evaluate the introduction of semantic in-

formation for unpaired person image generation:

• Baseline: our baseline model without the introduction

of semantic parsing, the architecture of which is the same as

appearance generative network, but without semantic map

as input. To keep the style on the output image, we use

mask-style loss, which replaces semantic maps with body

part masks in Eq. (8).

• TS-Pred: The semantic and appearance generative net-

works are trained independently in a two-stage manner.

And we feed the predicted semantic maps into appearance

generative network to get the output.

• TS-GT: The networks are trained in two-stage. We re-

gard semantic maps extracted from target images as ground

truth, and feed them into appearance generative network to

get the output.

• E2E (Ours): jointly training the networks in an end-to-

end manner.

Fig. 6 presents the intermediate semantic maps and the

corresponding generated images. Table 1 further shows the

quantitative comparisons. Without the guidance of seman-

tic maps, the network is difficult to handle the shape and

appearance at the same time. The introduction of semantic

parsing transformation consistently outperforms our base-

line. When trained in two-stage, the errors in the predict-

ed semantic maps lead to direct image quality degradation.

With end-to-end training, our model is able to refine the se-

mantic map prediction. For example, the haircut and sleeves

length in Fig. 6(a) are well preserved. For DeepFashion,

the end-to-end training strategy leads to comparable results

with that using GT semantic maps. For Market-1501, our

model (E2E) achieves even higher IS and SSIM values than

TS-GT. This is mainly because the human parser [7] does

not work very well on low-resolution images and many er-

rors exists in the parsing results, as the first row in Fig. 6(b).

We then analyze the loss functions in the appearance

generation as shown in Fig. 7. We mainly explore the pro-

posed style loss and face adversarial loss, since other losses

are indispensable to ensure the cycle consistency. We adopt

TS-GT model here to avoid the influence of semantic map

prediction. In (a) and (b), we replace the semantic-aware

style loss Lsty
A with mask-style loss and patch-style loss, re-

spectively. Without semantic guidance, both of them lead to

dizzy contour. Besides, the adversarial loss for faces effec-

tively helps generate natural faces and improve the visual

quality of output images.

4.4. Applications

Since the appearance generative network essentially

learns the texture generation guided by semantic map, it can

also be applied on other conditional image generation tasks.
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Table 1: Quantitative results on DeepFashion and Market-1501 datasets (*Based on implementation).

DeepFashion Market-1501

Models Paired data IS SSIM IS SSIM mask-IS mask-SSIM

PG2 [19] Y 3.090 0.762 3.460 0.253 3.435 0.792

Def-GAN [27] Y 3.439 0.756 3.185 0.290 3.502 0.805

V-Unet [5] N 3.087 0.786 3.214 0.353 – –

BodyROI7 [20] N 3.228 0.614 3.483 0.099 3.491 0.614

UPIS [21] N 2.971 0.747 3.431* 0.151* 3.485* 0.742*

Baseline N 3.140 0.698 2.776 0.157 2.814 0.714

TS-Pred N 3.201 0.724 3.462 0.180 3.546 0.740

TS-GT N 3.350 0.740 3.472 0.200 3.675 0.749

E2E(Ours) N 3.441 0.736 3.499 0.203 3.680 0.758

(a) Results on DeepFashion with different configurations. (Note E2E refines the haircut in the 1st row, sleeve length in the 2nd,

arms in the 3rd row, compared with TS-Pred.)

(b) Results on Market-1501 with different configurations. (Note E2E refines the body shape in the 1st and 3rd rows, pants length

in the 2nd row, compared with TS-Pred.)

Figure 6: Ablation studies on semantic parsing transformation.
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Figure 7: Analysis for the loss function in appearance gen-

eration. (a) Replace Lsty
A with mask-style loss. (b) Replace

Lsty
A with patch-style loss. (c) Without Lface

A . Results of

TS-GT with our full loss are in the right.

Figure 8: Application for clothing texture transfer. Left:

condition and target images. Middle: transfer from A to B.

Right: transfer from B to A. We compare our methods with

image analogy [9] and neural doodle [3].

Here we show two interesting applications to demonstrate

the versatility of our model.

Clothing Texture Transfer. Given the condition and tar-

get images and their semantic parsing results, our appear-

ance generative network is able to achieve clothing texture

transfer. The bidirectional transfer results can be viewed in

Fig. 8. Compared with image analogy [9] and neural doo-

dle [3], not only textures are well preserved and transferred

accordingly, but also photo-realistic faces are generated au-

tomatically.

Controlled Image Manipulation. By modifying the se-

mantic maps, we generate images in the desired layout. In

Fig. 9, we edit the sleeve lengths (top), and change the dress

to pants for the girl (bottom). We also compare with image

analogy [9] and neural doodle [3].

4.5. Discussions for Failure Cases

Though our model generates appealing results, we show

the examples of failure cases in Fig. 10. The example in the

first row is mainly caused by the error in condition semantic

map extracted by the human parser. The semantic genera-

Figure 9: Application for controlled image manipulation.

By manually modifying the semantic maps, we can control

the image generation in the desired layout.

Figure 10: The failure cases in our model.

tive network is not able to predict the correct semantic map

where the arms should be parsed as sleeves. The transfor-

mation in the second example is very complicated due to the

rare pose, and the generated semantic map is less satisfac-

tory, which leads to unnatural generated images. However,

with groundtruth semantic maps, our model still achieves

pleasant results. Thus, such failure cases can be probably

solved with user interaction.

5. Conclusion

In this paper, we propose a framework for unsupervised

person image generation. To deal with the complexity of

learning a direct mapping under different poses, we decom-

pose the hard task into semantic parsing transformation and

appearance generation. We first explicitly predict the se-

mantic map of the desired pose with semantic generative

network. Then the appearance generative network synthe-

sizes semantic-aware textures. It is found that end-to-end

training the model enables a better semantic map prediction

and further final results. We also showed that our model

can be applied on clothing texture transfer and controlled

image manipulation. However, our model fails when errors

exist in the condition semantic map. It would be an interest-

ing future work to train the human parser and person image

generation model jointly.
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